Field Type: | |
Domain center: | x y z |
Domain width: | |
Range: | min max |
`f = cos(x_x) cos(x_y) cos(x_z)`
`vec(f) = [[cos(x_x)cos(x_y)cos(x_z)], [sin(x_x)sin(x_y)sin(x_z)], [cos(x_x)cos(x_y)cos(x_z)]]`
`vec(g) = I_3 = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]`
`vec(f) = nabla cos(x_x) cos(x_y) cos(x_z)`
`vec(g) = [[cos(x_x)cos(x_y)cos(x_z)], [sin(x_x)sin(x_y)sin(x_z)], [cos(x_x)cos(x_y)cos(x_z)]]`
`f = nabla * vec(g)`
`vec(g) = [[cos(x_x)cos(x_y)cos(x_z)], [sin(x_x)sin(x_y)sin(x_z)], [cos(x_x)cos(x_y)cos(x_z)]]`
`f = nabla * vec(g)`
`vec(g) = [[cos(x_x)cos(x_y)cos(x_z)], [sin(x_x)sin(x_y)sin(x_z)], [cos(x_x)cos(x_y)cos(x_z)]]`
`vec(f) = nabla xx vec(g)`
`f = nabla * nabla cos(x_x) cos(x_y) cos(x_z)`
`vec(g) = [[cos(x_x)cos(x_y)cos(x_z)], [sin(x_x)sin(x_y)sin(x_z)], [cos(x_x)cos(x_y)cos(x_z)]]`
`vec(f) = nabla^2 vec(g) = nabla * ( nabla vec(g) ) = nabla ( nabla * vec(g)) - nabla xx ( nabla xx vec(g) )`
`vec(g) = [[cos(x_x)cos(x_y)cos(x_z)], [sin(x_x)sin(x_y)sin(x_z)], [cos(x_x)cos(x_y)cos(x_z)]]`
`vec(f) = nabla ( nabla * vec(g) )`
`H(x) = {(1, if x > 0), (0, if x <= 0):}`
`H(x, k) = 1 / (1 + e^(-2kx))`
`uu(a,b) = a + b`
`nn(a,b) = a * b`
`"circle"(vec(x),r) = H(r^2 - vec(x) * vec(x))`
`"square"(vec(x), vec("size")) = `
`H("size"_x // 2 - abs(x_x)) * `
`H("size"_y // 2 - abs(x_y)) * `
`H("size"_z // 2 - abs(x_z))`
`"cylinder"(vec(x),r,h) = `
`H(h//2 - abs(x_z)) * `
`H(r^2 - x_x^2 + x_y^2)`
`vec(f) = `
`"square"(vec(x) - [2,2,2], [2,2,2]) + `
`"circle"(vec(x) - [0,0,0], 1) + `
`"cylinder"(vec(x) + [2,2,2], 1, 1.5)`
`phi = sum_{i=0}^n q_i / (4 pi r_i)`
`vec(f) = nabla phi`
`phi = sum_{i=0}^n G m_i / r_i`
`f = phi`